
EPFL

Ecosystem Restoration – From Research to Implementation

Beate Jessel
Professor Landscape
Development

Professor

Beate Jessel

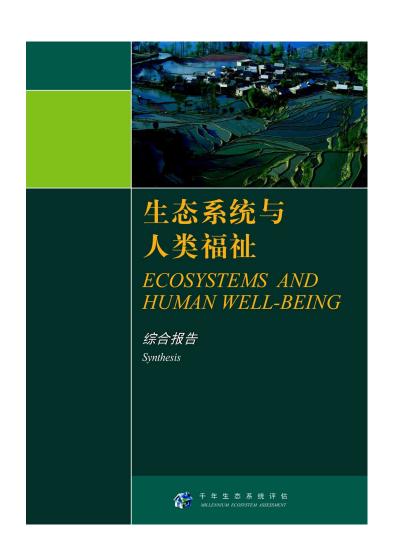
Institute of Architecture (IA)
Environmental Enginneering Institute (IIE)

Laboratory of Landscape Development (LAND)

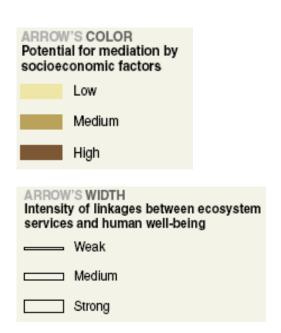
We deal with the coordination and moderation of different demands on space in terms of sustainable development.

Holistic understanding of landscape: An area perceived as such by humans, whose character is the result of the interaction of natural as well as anthropogenic factors. Inter- and transdisciplinary approaches and working at different scales and planning levels.

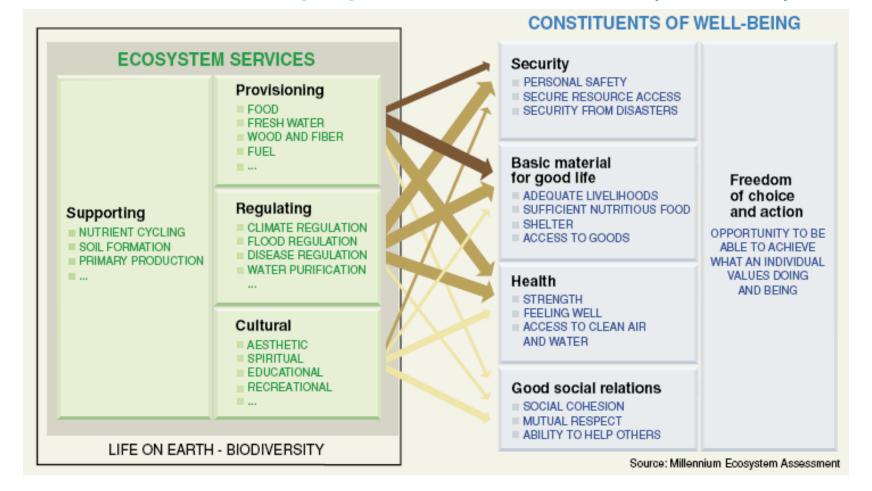
Interdisciplinary team of engineer, geographers, architect, economist



Millenium Ecosystem Assessment (MEA, 2005)


A report commissioned by the United Nations, to which several hundred experts contributed.

- Pointed out worldwide degradation of ecosystems and their services as a world-wide problem.
- Introduced the concept of Ecosystem Services
 "The benefits that people obtain from nature"
- Approx. 60% of the ecosystem services examined during the MEA are being degraded or used unsustainably.
- Reversing the degradation of ecosystems while meeting increasing demands for their services is a challenge



Categories of Ecosystem Services.....

.... and relating them to human needs

"The benefits that people obtain from nature" (MEA 2005)



Fields of Action:

- Water bodies and floodplains
- Peatlands, wetlands
- Forests
- Marine ecosystems and coastlines
- Agroecosystems, farmlands
- Grasslands, scrublands and savannahs
- Mountain ecosystems
- Urban Ecosystems

aims to

- focus global action on ecosystem restoration
- prevent, halt and reverse the degradation of ecosystems on all continents and in all oceans.

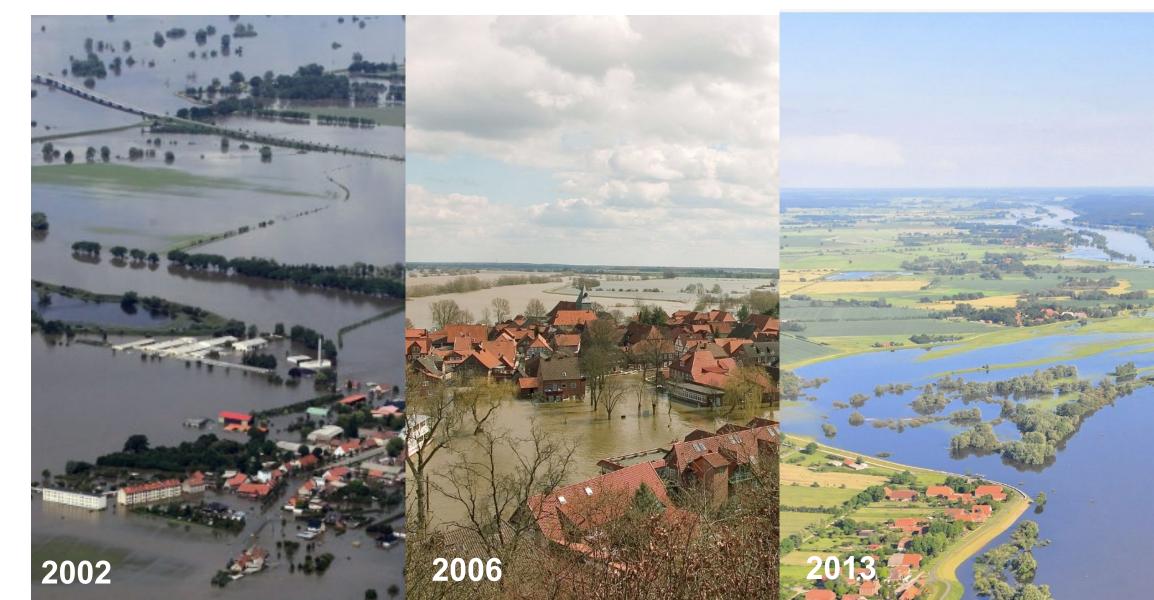
European Commission

18 August 2024: EU Nature restoration law entered into force:

- at least 20% of the EU's degraded ecosystems to be restored by 2030
- improve river connectivity: at least 25.000 km of rivers in the EU to be restored by 2030.

LAND
Landscape
Development
Beate Jessel

I. Restoration of floodplains


Intact floodplains provide numerous ecosystem services

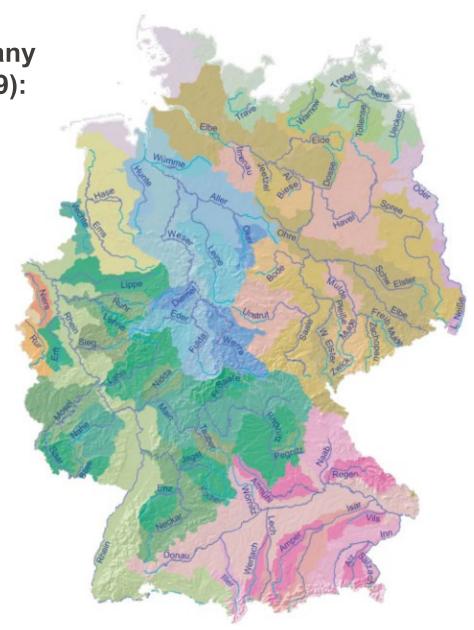
The loss of floodplains exacerbates severe flooding events

Elbe river: Several severe ("hundred-year") flooding events since 2000

Restoration of Floodplains

How can awareness be raised at the political level for the need to restore floodplains?

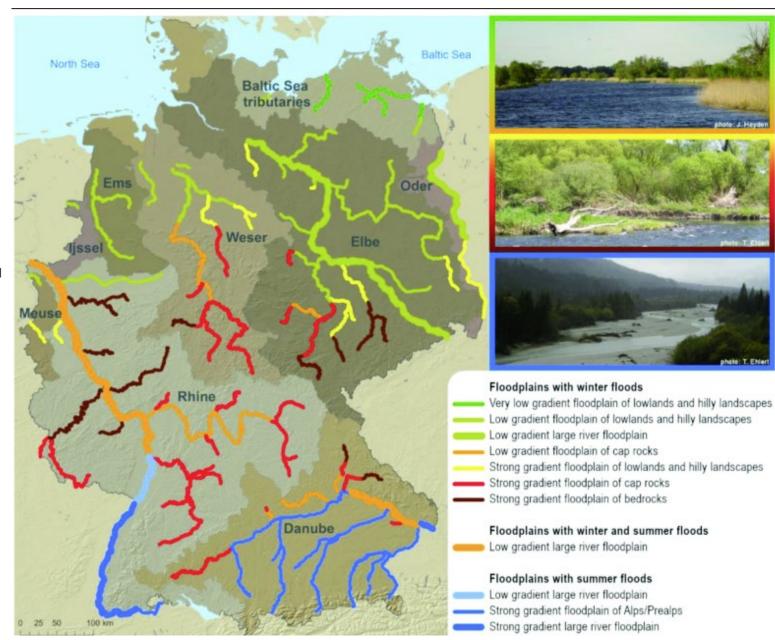
How can priorities for restoration projects be identified?


Preparation of an evidence-based nationwide overview of the state of German floodplains

How can the benefits of individual restoration projects be demonstrated?

Surveyed rivers and their floodplains in Germany (BfN & BMU 2021, first survey dating from 2009):

Floodplains of 79 rivers
with catchments > 1000 qkm
total length of 10.297 km
4,5 % of Germany's area



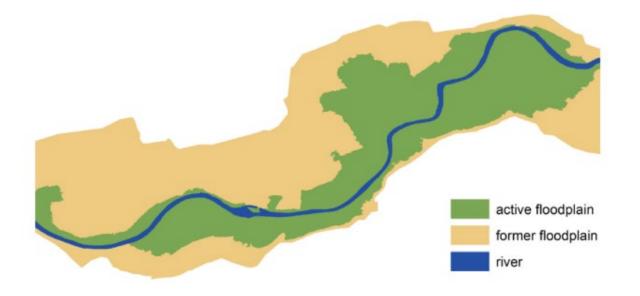
I. Identification

Elaborate a typology of German river basins and floodplains

(according to Koenzen 2005)

Data sources: [32,33], basic spatial data © GeoBasis-DE/ BKG (2014), hillshade derived from European Digital Elevation Model (EU-DEM), version 1.1, © European Union, Copernicus Land Monitoring Service 2016, European Environment Agency (EEA)

LAND



I. Identification

Delineation of the floodplains

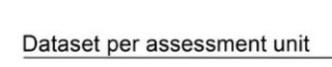
Steps to determine the boundaries of the sub-units:

- 1. Take the river area from the Digital Land Cover Model.
- 2. Determine the active floodplain on the basis of flood probability data (medium pro bability, "100-year flood").
- 3. Determine the boundaries of the morphological floodplain by a semi-automated calculation based on a detailed digital terrain model and flood areas of rare floods (low probability).

River's morphological floodplain can be subdivided in:

Active floodplain: Areas still inundated during floods

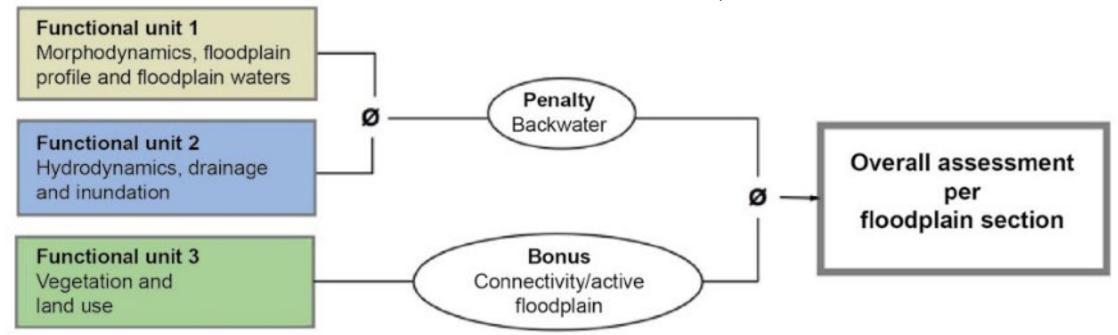
Former floodplain: Areas cut off from the river's flooding regime


II. Analysis

Merging and assigning area-based data to the assessment categories (functional units, right and left side of 1-km floodplain sections of the active floodplain, BfN & BMU 2021)

Area-based dataset (e.g. land-use models)

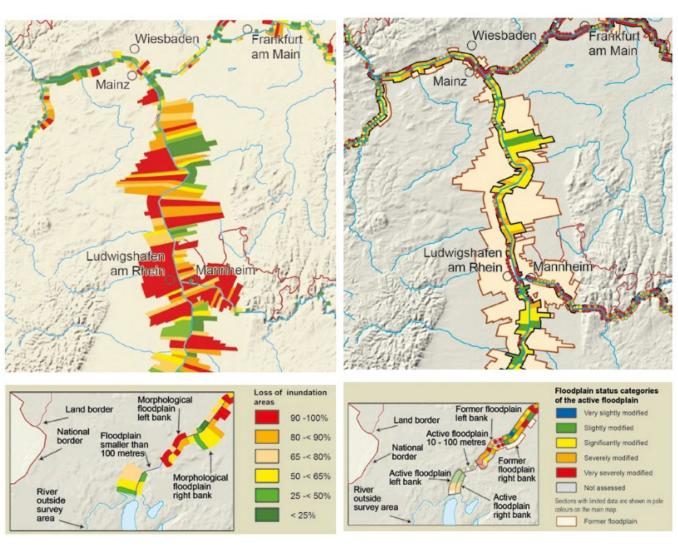
subdivided + segmented floodplain



II. Analysis

Floodplain Status Assessment

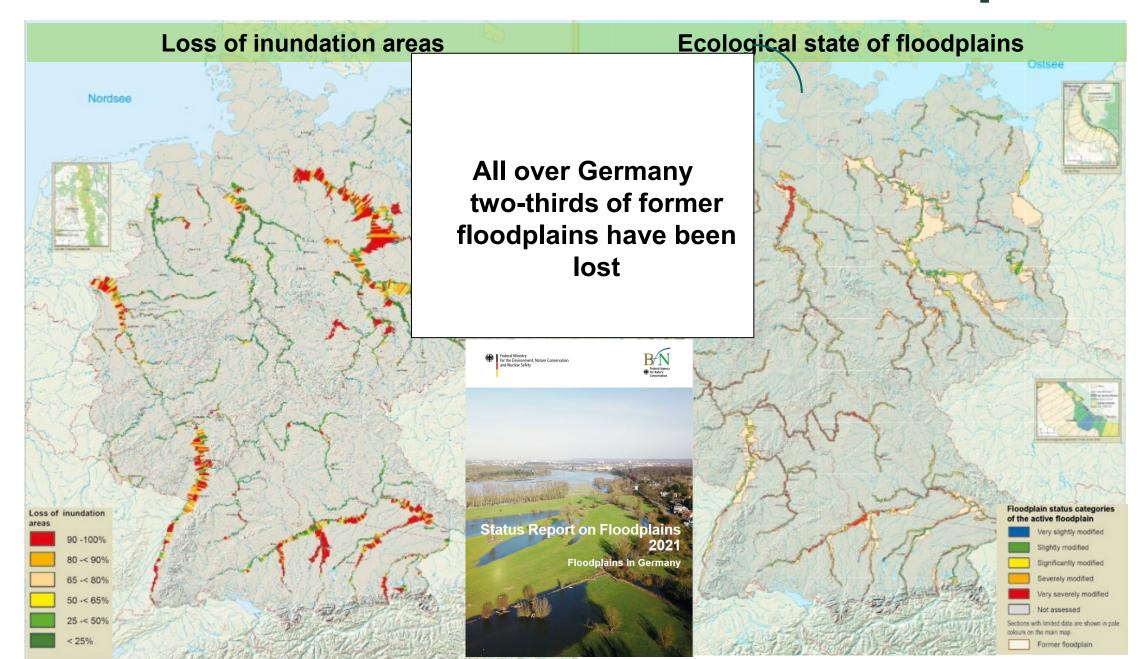
Calculating the status of the functional units by combining the following criteria (BfN & BMU 2021):

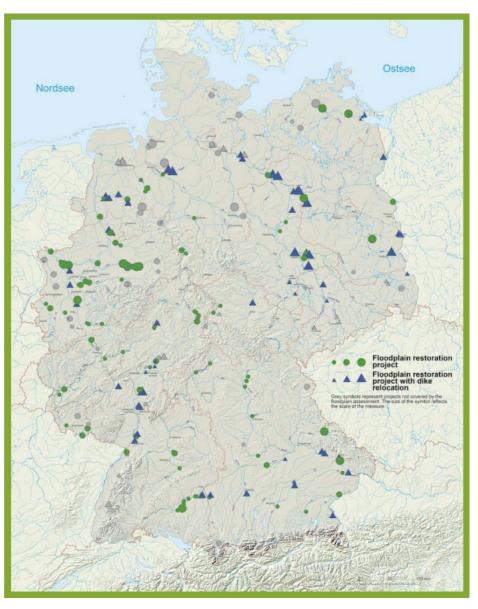

II. Analysis

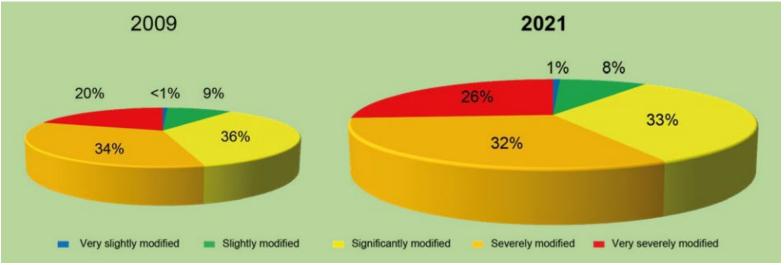
Floodplain Status Assessment

Category		Characteristics				
1	Very slightly modified	 Floodplains not disconnected or only very slightly disconnected from flooding due to river engineering and/or flood protection measures Rivers usually with a very low degree of engineering, rarely with standard profile, with very high potential for inundation Mainly no land use or very low-intensity land use, mostly forest, wetlands and occasionally grassland 				
2	Slightly modified	 Floodplains disconnected to a small degree from floods by river engineering and/or flood protection measures Rivers with varying degrees of engineering, partly with standard profile, but generally with high potential for inundation Mainly low-intensity land use, mostly forest, wetlands and grassland 				
3	Signif- icantly modified	 Floodplains partially disconnected from flooding by river engineering and/or flood protection measures Rivers usually engineered, but with potential for inundation Variable land use intensities 				
4	Severely modified	 Floodplains largely disconnected from flooding by river engineering and/or flood protection measures Rivers generally engineered, partially impounded Intensive land use, mainly intensive agriculture and settlements 				
5	Very severely modified	 Floodplains disconnected from flooding by river engineering and/or flood protection measures Rivers generally heavily engineered, often impounded High intensity land use, mostly with higher proportions of settled land 				

■LAND
Landscape
Development
Beate Jessel


Resulting floodplain status categories (BfN & BMU 2021)


Section of map "Loss of inundation areas"


Section of map "Floodplain status"

Nation-wide overview of the status of floodplains

Nation-wide overview of the status of floodplains

Despite of many floodpain restoration projects on rivers in Germany over the last years...

...no significant change in the status of the river floodplains in Germany over the last 12 years

...still only 9 % of the foodplains are "slightly" oder "very slightly modified", but one third are "significantly modified"

(BfN & BMU 2021)

EPFL

Nation-wide overview of the status of floodplains

Despite of many floodpain restoration projects on rivers in Germany over the last years...

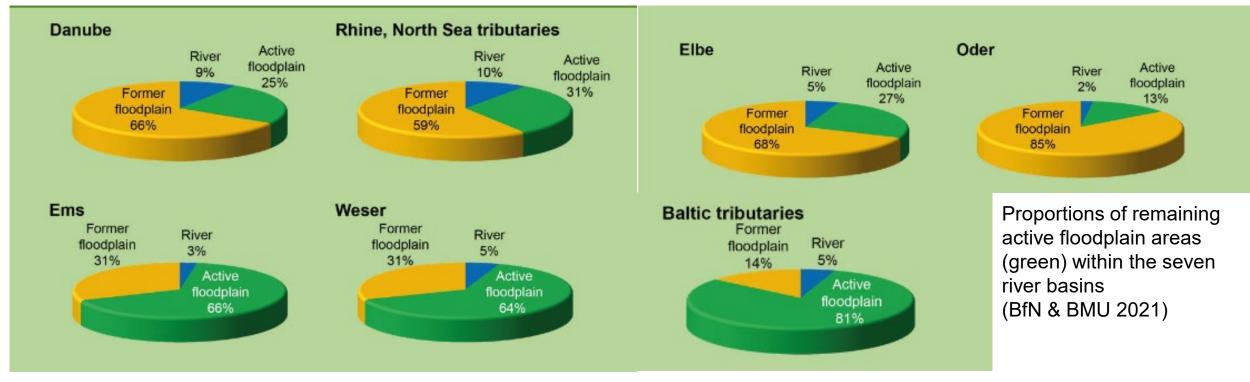
...the overall status of floodplains did even slightlydeteriorate from 2009 to 2021.

Excavated water body

Landfill site

Arable land and intensively used grassland in the floodplain

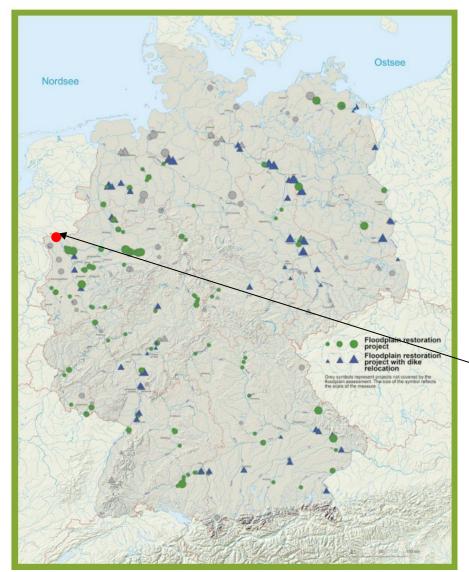
Intensive agriculture and quarry ponds

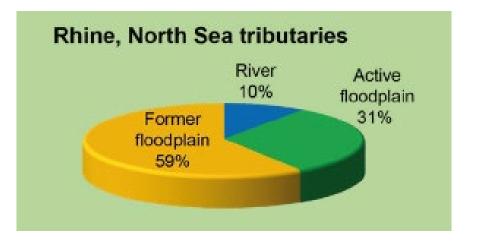


Buildings in the floodplain

Various forms of land use that contribute to a negative state of floodplains

Nation-wide overview of the status of floodplains




However, there are significant regional differences between the river basin districts, and thus different needs for action....

III. Implementation

Proportions of remaining active floodplain areas (green) within the Rhine +North Sea tributaries basin (BfN & BMU 2021)

Restoration Project "Mouth of the Lippe

III. Implementation

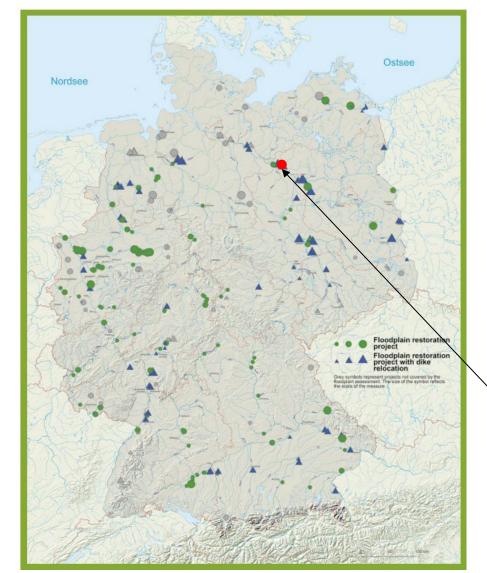
Restoration Project "Mouth of the Lippe

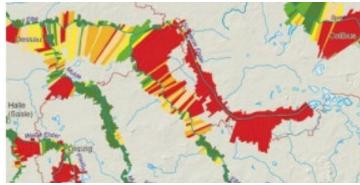
The mouth of the Lippe: white lines: floodplain delineation with 1-km floodplain sections

The Lippe before the measures were implemented (left) and immediately after the measures were implemented (right)

III. Implementation

Restoration Project "Mouth of the Lippe"





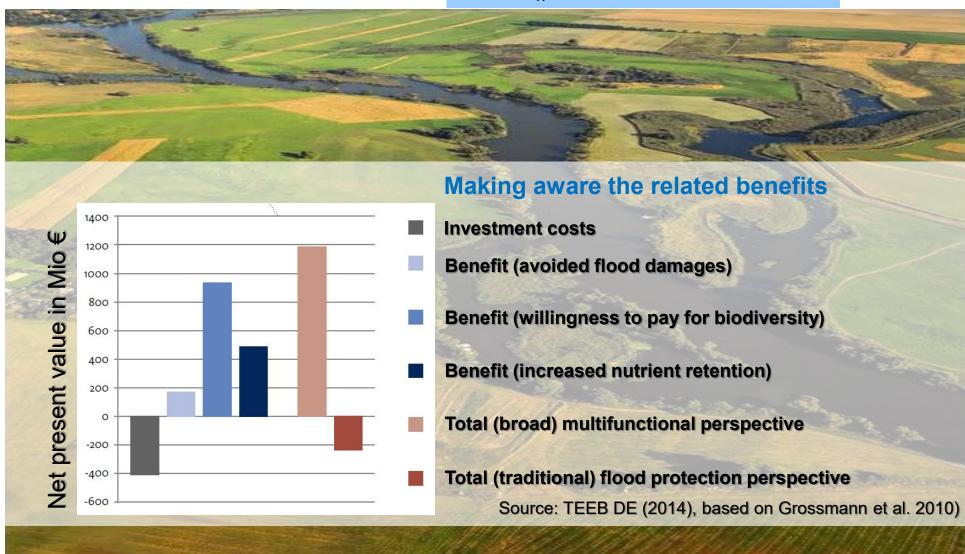
III. Implementation

Proportions of remaining active floodplain areas (green, above) within the Elbe rivertributaries basin and loss of inundation areas at the Middle Elbe (BfN & BMU 2021)

Restoration Project "Lenzener Elbtalaue"

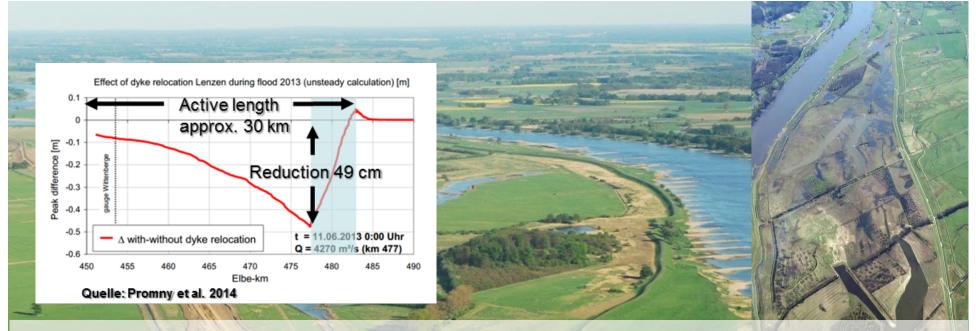
III. Implementation

Restoration Project "Lenzener Elbtalaue"



III. Implementation

Photo: NABU Germany


Restoration Project "Lenzener Elbtalaue"

III. Implementation

Restoration Project "Lenzener Elbtalaue"

Through dike relocation (420 ha, completed 2009) in the Lenzener Elbe valley, the peak of floods in 2013 was reduced by up to 49 cm.

In the city of Schnackenburg, approx. 5 km upstream, the peak was reduced by more than 20 cm.

Landscape Development Beate Jessel

Foto: J. Purps

Foto: K. Nabel

Elements of a comprehensive floodplain management

Evaluation

- Temporal changes of items in identification, analysis & implementation
- Status of policy implementation by indicators

Identification

- Floodplain typology
- · Floodplain delineation
- · Restoration projects
- Floodplain land use and habitat types
- Threat to species and habitats

Implementation

- Knowledge transfer (science, politics, practice)
- Federal political programs
- Synergies with policies from other fields
- Financing and funding

Analysis

- Loss of inundation areas
- Status of floodplains
- Status of floodplain biodiversity
- Quantification of floodplain functions
- Potentials for restoration
- Restoration progress

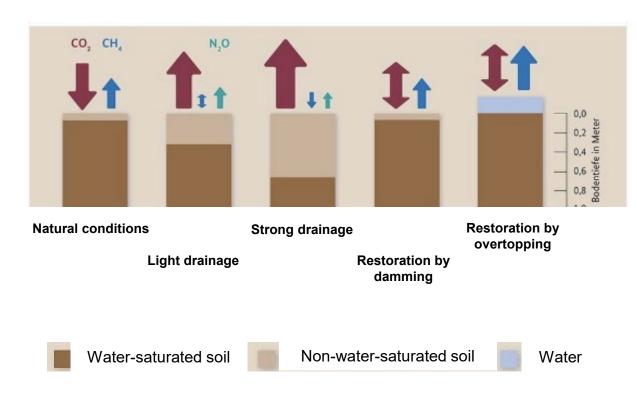
Landscape Development Beate Jessel

Heyden & Natho 2022 https://doi.org/10.3390/su141710610

II. Restoration of Peatlands and carbon-rich soils

Multiple Ecosystem Services provided by intact peatlands

Function	Description			
Sink	Deposition and recycling of nutrients			
Disposal	Carbon sequestration			
Regulation	Keeping cultural landscapes open; site- and culture- specific biodiversity; ground-water retention			
Conservation	Regional responsibility for plant communities; key species			
Production	Fodder, food, biomass, raw materials			
Information	Landscape beauty, recreation, aesthetics and cognition, research			


Foto: © Karin Ullrich

➤ Although they cover only 3-4% of the earth's surface, peatlands store about a third of the world's soil CO₂.

Drained peatlands contribute to climate change

Drösler et al 2020

- Intact peatlands continuously sequester CO₂ in the soil,
 - while drained peatlands release large amounts of CO₂ into the atmosphere, accelerating climate change.
- Over 90% of Germany's and Switzerland's peatlands have been drained and disappeared in the last 200 years.
 - > Result: Large CO₂-emissions (in Germany contributing about 7.5 % of the country's total greenhouse gas emissions).
- Drainage of peatlands also means the loss of other services, such as of the native flora and fauna and the balancing effect on the landscape's water balance.
- Rewetting peatlands: the decomposition of peat is stopped and the release of CO₂ is reduced.
- However, rewetting drained peatlands may result in initially high methane (CH₄) emissions, which is often seen as a counter-argument against rewetting.

Restoration of peatlands and carbon-rich soils

■LAND
Landscape
Development
Beate Jessel

Which restoration method is best in the long term for maintaining a functional and near-natural raised bog?

How can incentives be created to foster peatland restoration?

The OptiMoor Project

Is it possible to restore a living raised bog on areas that have been used for agriculture for decades to centuries?

Long-term goal: develop and disseminate guidelines for the restoration of raised bog sites that were previously used for agriculture.

Project consists of two sub-projects: implementation part 2016–2019 accompanying scientific part 2016–2021

Rewetted bog in the Diepholzer Moor lowlands © N. Jantz

Carried out by:

Funded by:

The OptiMoor Project Test design – seven variants are analysed

	Plot name	Management measures
V1	IG	Three-cut regime with an N-fertilization equivalent of 150 kg/ha mimicking the previous land use
V2	OS	Rewetting at original surface and free succession
V 3	OS+mowing	Rewetting at original surface with regular (two-cut) biomass harvesting
V4	TSR30	Rewetting after topsoil removal of on average 30 cm and free succession
V5	TSR30 + Sphagnum	Rewetting after topsoil removal of on average 30 cm and introduction of Sphagnum spp. fragments covered with a straw layer
V6	TSR60	Rewetting after topsoil removal of on average 60 cm and free succession
V7	TSR60 + Rewetting after topsoil removal of on average 60 cm and introduce Sphagnum spp. fragments covered with a straw layer	

■LAND

Test design - different data to be collected

Greenhouse gases

Measurements of the carbon dioxide, methane and nitrous oxide exchange carried out with the help of gas collection hoods.

Nutrients

The initial hydrological conditions on the area were recorded by taking smaples of the groundwater (1 m below the mineral subsoil) and the bog water (0.2 m above the mineral subsoil). During the project regular examination of samples of the bog and groundwater in order to track the development of the water chemistry and nutrient situation.

Stratigraphy/Soil conditions

Peat drillings to determine the humus content and the bulk density of the peat, as well as for further nutrient analyses. After uncovering the peat, examine the material to see if germinable seeds and spores are present and to determine which species they belong to.

Flora and Fauna

Vegetation analysis at regular intervals; trap analysis to determine the input of diaspores (to predict which plant species could be established) and to determine the diversity of some animals groups that live on the ground (insects and spiders).

Remote Sensing

Creation of a detailed digital terrain model (to map changes in the terrain and to accurately estimate the amount of peat removed)

Water management

Regulation of the water level using pumps and sheet piling.

Greenhouse gas measurement with the hood method © A. Bartel

Detection of spiders using pitfall traps © N. Jantz

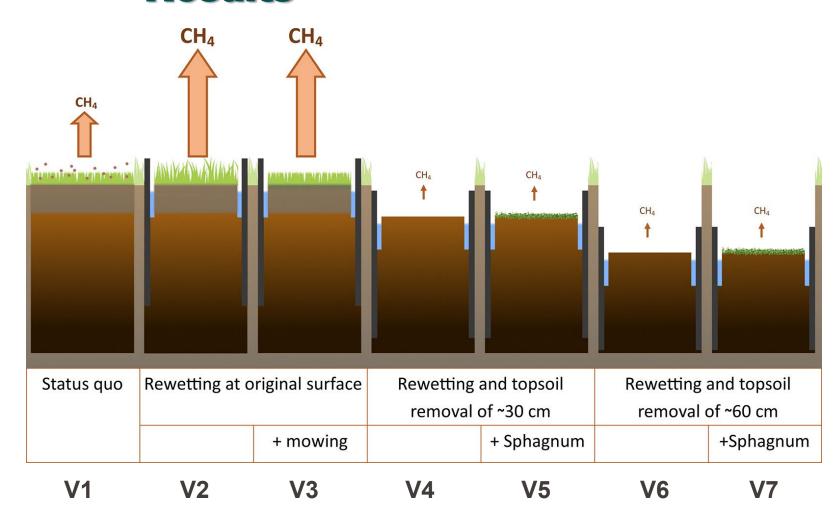
Inserting peat moss (Sphagnunm ssp.)

The elevation model shows changes in the relief© Hofer & Pautz GbR

Re-pumping when the water level drops. The water meter measures the amount of water supplied. © A.Bartel

The OptiMoor Project Results

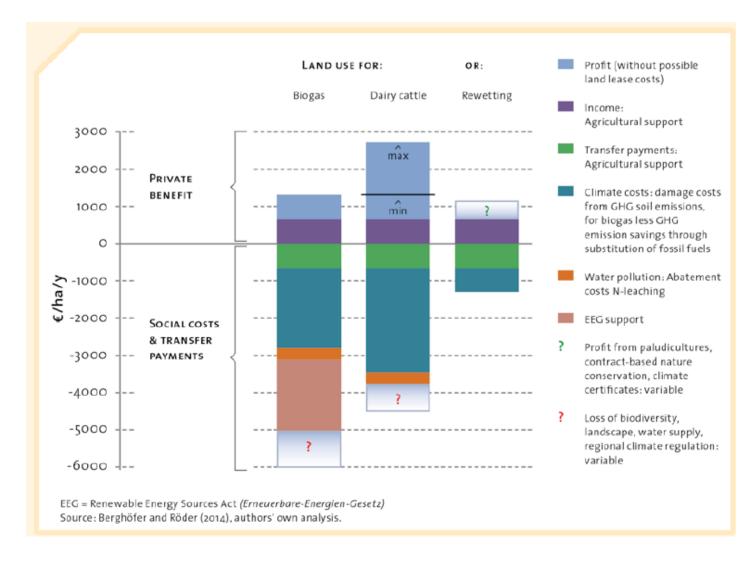
		CO ₂ -C	Harvest-C	CH₄-C	N ₂ O-N	Topsoil-C
Approach	Year	g/m²	g/m²	g/m²	g/m²	kg/m²
IG	Year 1	185.1 ± 16.4	445.5 ± 18.7	27 ± 13.6	0.3 ± 0.1	0
OS		123 ± 11.4	0	90.8 ± 16.6	0.2 ± 0.1	0
OS+mow.		406.9 ± 13.9	300.6 ± 15.6	111.8 ± 36.2	0.1 ± 0.2	0
TSR30		-39.3 ± 5.8	0	2.5 ± 0.3	-0.1 ± 0.1	17.49 ± 0.95
TSR30 + Sphag.		-76.8 ± 5.5	0	2.1 ± 0.3	-0.1 ± 0.1	20.10 ± 1.17
TSR60		35.1 ± 3.6	0	0.3 ± 0.1	0 ± 0.2	37.05 ± 1.57
TSR60 + Sphag.		-154.5 ± 4.8	0	1 ± 0.1	-0.1 ± 0.1	38.87 ± 3.21


		CO ₂ -C	Harvest-C	CH₄-C	N ₂ O-N	Topsoil-C
Approach	Year	g/m²	g/m²	g/m²	g/m²	kg/m ²
IG	Year 2	1892.8 ± 33	640.6 ± 24.5	-0.1 ± 0.1	0.4 ± 0.2	0
OS		701.8 ± 15	0	48.5 ± 4	0.2 ± 0.1	0
OS+mow.		631.8 ± 17.9	218.6 ± 25.6	103.8 ± 34.4	0.6 ± 0.5	0
TSR30		-14.5 ± 10.3	0	3.9 ± 0.1	-0.2 ± 0.4	0
TSR30 + Sphag.		-84.2 ± 10	0	3.1 ± 0.3	0 ± 0.2	0
TSR60		26 ± 7.4	0	0.7 ± 0.1	0 ± 0.2	0
TSR60 + Sphag.		−92.7 ± 8.9	0	1.2 ± 0	0 ± 0.1	0

Greenhouse gas emissions (in g/m²) of the *status quo* plot ("IG") and the six restoration approaches in year 1 (24 September 2017 to 25 September 2018) and year 2 (25 September 2018 to 25 September 2019) and C export by TSR (Huth et al. 2020).

EPFL

The OptiMoor Project Results



- Topsoil removal prior rewetting reduces CH₄ emissions by factor 30–400.
- CH₄ production and methanogen abundance are highest in the degraded topsoil.
- Spreading of moss
 (Sphagnum spp.) had only little
 effect on CH₄ emissions during
 the first year of establishment.
- ➤ Efficiency of removing degraded topsoil to avoid high CH₄ emissions after rewetting was demonstrated (Huth et al. 2020)

Restoration of peatlands and carbon-rich soils

Private benefits, social costs and subsidies for land use on drained peatlands in Lower Saxony.

Estimates in €/ha/y for

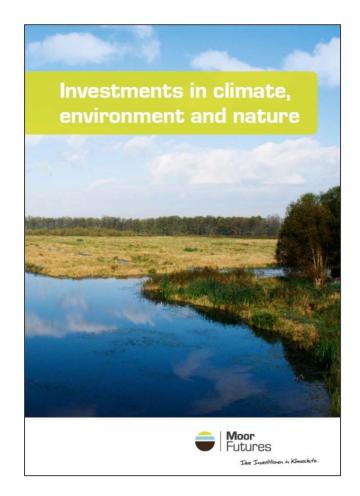
- Biogas (electricity from energy crops),
- Maize (cultivation for dairy cattle fodder),
- rewetting for nature conservation/ climate change mitigation,with paludiculture if appropriate
- From a societal perspective, rewetting it is the best use of peatlands, as it has a less harmful effect on the climate and water resources and enhances other ecosystem services.

■LAND
Landscape
Development
Beate Jessel

TEEB Germany 2015, according to S. Wichmann

MoorFutures -

Establish a Certificate Trading System for restored peatlands

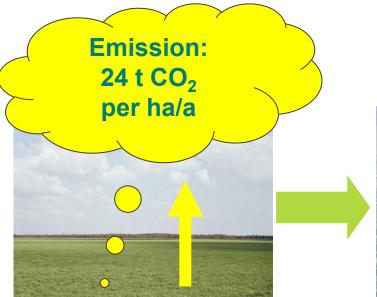

MoorFutures®
Integration of additional ecosystem services

integration of additional ecosystem services (including biodiversity) into carbon credits – standard, methodology and transferability to other regions

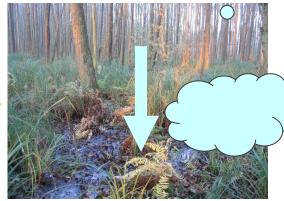
https://www.moorfutures.de/

2015

MoorFutures – Requirements


- Designed for voluntary markets
- Site-specific, science-based + transparent
- Based on certified valuation of reduction of CO₂ emissions
- Take into account additional benefits
- Permanent maintenance has to be guaranteed

Restoration of peatlands and carbon-rich soils


Making Peatland Restoration a climate investment:

Mitigation of climate gas emissions and carbon sequestration by peatland restoration

intensively used meadows and pastures on peat soil

Sequestration: 1 t CO₂ oper ha/a

rewetted grassland with elder afforestation

Value for greenhouse gas mitigation of 30,000 ha peatland restoration in the state "Mecklenburg Vorpommern": 30 Mio. € per year (avoided damage costs)

ESS = Mitigation of 25 t CO₂ per ha/a

Valued with <u>alternative costs</u> for CO₂ mitigation by wind power (40 € per t CO₂)

Value of ESS = 25 • 40 € = 1000 € per ha/a

Valued with <u>avoided damage costs</u> (70 € per t CO₂): Value of ESS = 25 · 70 € = 1750 € per ha/a Mitigation costs per t CO₂: 0 – 4 €

Source: Schäfer 2007, 2009

LAND

Case 2: Peatland restoration - Moor Futures 2.0 – integration of further ecosystem services

Intact Peatlands are much more than Carbon

MoorFutures 2.0 represent those effects

MoorFutures 2.0 represent:

- Improvement of water quality
- Improvement of groundwater recharge
- Flood reduction
- Cooling of local climate
- Biodiversity typical for peatlands

...by rewetting degraded peatlands

Additional Effects are:

Identified

Assessed

Quantified (e.g. in kg)

Monetarized (in €)

Sold (in €)

Attention:

Price of certificates:

- NOT based on generally estimated values of ecosystem services

→ Benefits are quantified as much as possible

MoorFutures – There is a complex method behind it

LAND Landscape Development Beate Jessel

Hans Joosten, Kristina Brust, John Couwenberg Alexander Gerner, Bettina Holsten, Thorsten Permien, Achim Schäfer, Franziska Tanneberger, Michael Trepe

MoorFutures[®]

Integration of additional ecosystem services (including biodiversity) into carbon credits standard, methodology and transferability to other regions

BfN-Skripten 407

https://www.moorfutures.de/

Sites in Mecklenburg-Western Pomerania pre-selected for rewetting

ESS	Standard	Premium		
Improved water quality	Estimation using the NEST approach (kg N $\mathrm{y}^{\text{-1}}$)	Modelling with WETTRANS (kg N a ⁻¹) and PRisiko (kg P y ⁻¹)		
Flood prevention	Modelling of the r etention volume (m³) – as a standard procedure if entry data are available, or else as a premium procedure. Modelling of flood peak reduction as a premium procedure only			
Groundwater enrichment	Modelling of the total available amount of water (m³) and the water table (cm above/below surface) - as a standard procedure if entry data are available, or else as a premium procedure			
Evaporative cooling	Estimation using the EEST approach (W ${\rm m^{\text{-2}}}$ or kWh ${\rm ha^{\text{-1}}}$ ${\rm y^{\text{-1}}}$)	Modelling with AKWA-M (W ${\rm m}^{\text{-}2}$ or kWh ${\rm ha}^{\text{-}1}$ ${\rm y}^{\text{-}1}$)		
Increased mire typical biodiversity	Estimation using the BEST approach	Measuring and evaluation through indicator species models		

Site-specific quantification in a standard an a premium approach

Conclusions

- Ecosystem restoration is closely related to ecosystem services and may provide many synergies, e.g. to mitigation/adaptation to climate change
- Initial Research ("Vorlaufforschung") appropriate to be prepared when political requirements come about
- Local Restoration activities should be embedded into broader surveys
- More large-scale restoration projects needed to provide better effects
- Ecological and socio-economic approaches have to go hand in hand
- Ecosystem restoration should be accompanied by monitoring

EPFL

